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Abstract

This paper presents an O(n2) algorithm for deciding isomorphism of graphs that have
bounded feedback vertex set number. This number is defined as the minimum number of vertex
deletions required to obtain a forest. Our result implies that Graph Isomorphism is fixed-
parameter tractable with respect to the feedback vertex set number. Central to the algorithm
is a new technique consisting of an application of reduction rules that produce an isomorphism-
invariant outcome, interleaved with the creation of increasingly large partial isomorphisms.

1 Introduction

The Graph Isomorphism problem is among the few problems in NP for which the complexity is
still unknown: Up to now, neither an NP-hardness proof nor an algorithm with provably polyno-
mial running time has appeared. Given two finite graphs G1 and G2, the Graph Isomorphism

problem (GI) asks whether these graphs are structurally equivalent, i.e., whether there exists a
bijection from V (G1), the vertices of G1, to V (G2), the vertices of G2, that preserves the adjacency
relationship. Being one of the open problems from Garey and Johnson’s list of problems with yet
unsettled complexity status [17], the Graph Isomorphism problem has been studied extensively
throughout the last three decades. During that time, a subexponential-time algorithm for the
general problem has been developed by Babai [2]. His algorithm uses a degree reduction method
by Zemlyachenko (see [2]) as well as Luks’ polynomial-time algorithm for graphs of bounded de-
gree [21]. Schöning’s lowness proof [26] showed that Graph Isomorphism is not NP-hard, unless
the polynomial hierarchy collapses.

Research on Graph Isomorphism for restricted graph classes has led to a number of polynomial-
time algorithms as well as hardness results. Let us review the known results for classes defined by
bounded values of some graph parameter, e.g., graphs of degree bounded by k, from a parameter-
ized point of view. Depending on the parameter GI becomes polynomial-time solvable or it remains
GI-complete (i.e., polynomial-time equivalent to GI) even when the parameter is bounded by a con-
stant. The latter is known for bounded chromatic number and bounded chordal deletion number
(i.e., number of vertex deletions needed to obtain a chordal graph), since Graph Isomorphism is
GI-complete for the class of bipartite graphs and the class of chordal graphs (see [30]).

The polynomial results can be further split into runtimes of the form O(f(k)nc) and O(nf(k));
both are polynomial for bounded k but for the latter the degree of the polynomial grows with k.
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Parameter Comp. of the parameter Upper bound for GI

Chromatic number 3-col. is NP-hard [17] GI-hard for χ(G) = 2
Chordal deletion number O(f(k)nc) [22] GI-hard for cvd(G) = 0

Max degree O(m) O(nck) [4]
Genus O(f(k)m) [19] O(nck) [13, 23]
Treewidth O(f(k)n) [6] O(nk+4.5) [5]

Rooted tree distance width O(kn2) [31] O(f(k)n3) [31]
H-free deletion number O(dknd) [7] FPT if (∗) [Section 2]
Feedback vertex set number O(5kkn2) [8] O((2k + 4k log k)kkn2) [Section 3]

Table 1: For various graph parameters the table shows upper bounds on the running time required
to compute the parameter as well as running times of the Graph Isomorphism problem. (∗)
The fixed-parameter tractability holds if the colored H-free isomorphism problem can be solved in
polynomial time.

Parameterized complexity (see [9]) studies these function classes in a multivariate analysis of algo-
rithms, motivated by the much better scalability of O(f(k)nc) algorithms, so-called fixed-parameter
tractable algorithms. In the case of Graph Isomorphism for a large number of parameters
only O(nf(k)) algorithms are known. Such algorithms exist for the parameters degree [21], eigen-
value multiplicity [3], color class size [15], and treewidth [5]. Furthermore, this running time has
been shown for the parameter genus [13, 23] (extending polynomial-time algorithms for planar
graphs [18, 27]) and, more general, for the size of an excluded minor [24]. Algorithms of run-
time O(f(k)nc) are known for the parameters color multiplicity [16], eigenvalue multiplicity [10],
rooted tree distance width [31]. For chordal graphs, there is an fpt-algorithm with respect to the
size of the simplicial components [29]. The fixed-parameter tractable algorithm for the parame-
ter color multiplicity has recently been extended to hypergraphs [1]. Table 1 summarizes some of
these results for parameterized Graph Isomorphism as well as the complexity of computing the
parameters.

We develop an O(f(k)nc) algorithm for Graph Isomorphism parameterized by the feedback
vertex set number. The feedback vertex set number of a graph G, denoted by fvs(G), is the size
of a smallest subset of vertices S, whose removal leads to a graph that does not contain cycles,
i.e., for which G − S, the graph induced by the set of vertices V (G) \ S, is a forest. Our result,
a fixed-parameter tractable algorithm, has a running time of O(f(k)n2), i.e., it runs in O(n2) for
graphs of bounded feedback vertex set number.

For a selection of graph parameters, Figure 1 shows the partial order given by the relation
stating that a parameter k′ is larger than another parameter k, if k can be bounded by a function g

of k′. From this it is immediate that if a problem is fixed-parameter tractable (FPT) with respect
to some parameter then it is also FPT with respect to any larger (in Figure 1 higher) parameter:
time O(f(k)nc) with respect to k implies time O(f(g(k′))nc) with respect to k′ (likewise for runtimes
of the form O(nf(k))). The feedback vertex set number, which has been extensively studied in
various contexts [8, 11, 14, 17, 25, 28], lies above other interesting parameters: As mentioned
GI remains hard on graphs of bounded chromatic number, while being polynomially solvable for
bounded treewidth. As the rooted tree distance width the feedback vertex set number is a measure

2



tw

pw

bw vc

fvs

cvd χ

∆

Figure 1: For various graph parameters, the figure depicts the partial order given by the relation that
defines a parameter to be lower than another parameter, if the former can be bounded by a function
of the latter. If a problem is FPT with respect to some parameter then it is also FPT with respect
to all higher parameters. The parameters are: bandwidth (bw), pathwidth (pw), treewidth (tw),
size of a minimum vertex cover (vc), size of a minimum feedback vertex set (fvs), vertex deletion
distance from chordal graphs (cvd), maximum degree (∆), and chromatic number (χ).

for how far a graph is from being a forest. However, these two parameters are incomparable, i.e.,
neither is bounded by a function of the other.

Our contribution is based on two new techniques: The first makes use of the interplay between
deletion sets and small forbidden structures. This is illustrated in Section 2 on the simplified situ-
ation where the parameter is the vertex deletion distance to a class of graphs that is characterized
by finitely many forbidden induced subgraphs. When we consider the feedback vertex set number
in Section 3, the forbidden substructures are cycles, which may be of arbitrary length. The second
technique addresses this obstacle by using reduction rules that guarantee short cycles. For the
choice of these rules, however, it is crucial that they are compatible with isomorphisms.

2 H-free deletion number

In this section, illustrating the usefulness of deletion sets in the context of Graph Isomorphism,
we briefly consider the parameter H-free deletion number. For a class C of graphs we say that a
graph G has vertex deletion distance at most k from C if there is a deletion set S of at most k

vertices, for which G− S ∈ C, i.e., by deleting a most k vertices we obtain a graph in C.

Definition 1. A class C of graphs is characterized by finitely many forbidden induced subgraphs,
if there is a finite set of graphs H = {H1, . . . , H`}, such that a graph G is in C if and only if G

does not contain Hi as an induced subgraph for any i ∈ {1, . . . , `}. The class C is called the class
of H-free graphs.

It is known that computing the H-free deletion number k and a corresponding set S of vertices
to be removed is FPT with respect to k: There is an algorithm with runtime O(dknd) where d

is the number of vertices of the largest forbidden induced subgraph. This follows from a more
general result for graph modification problems due to Cai [7]. In fact the special case of vertex
deletion can be solved by identifying all sets of at most d vertices that induce a forbidden subgraph
and computing a minimum hitting set; using a current d-Hitting Set algorithm [12] this gives a
slightly better exponential dependence on k of ck

d where cd ≤ d and cd tends to d− 1.
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For an FPT-algorithm that solves Graph Isomorphism parameterized by the H-free deletion
number, we require a method of consistently removing vertices from the graph: Let G be a colored
graph, c a vertex coloring of G, and v a vertex of G. We define G.v to be the colored graph on the
vertex set V (G) \ {v} with the coloring given by (χ(v, v′), c(v′)) for all v′ ∈ V (G) \ {v}, where the
edge characteristic function χ(v, v′) is 1 if v and v′ are adjacent and 0 otherwise. Intuitively, the
new coloring encodes at the same time whether in the original graph a vertex is adjacent to v as
well as its previous color. In particular, we get the following observation: Suppose that G1 and G2

are colored graphs and that v1 and v2 are equally colored vertices of G1 and G2 respectively, then
there is an isomorphism φ with φ(v1) = v2 if and only if G1 . v1 and G2 . v2 are isomorphic as
colored graphs (where isomorphisms must respect colors).

Algorithm 1 IsomorphismINDC

Input: (G1, G2, k): A parameter k and two colored graphs G1, G2 with distance of at most k to
a fixed class C that is characterized by a finite set of forbidden induced subgraphs.

Output: An isomorphism φ of G1 and G2 or report false if no such isomorphism exists.

1: if exactly one of G1 and G2 contains a forbidden subgraph then
2: return false
3: end if
4: if G1 and G2 contain no forbidden subgraphs then
5: use an algorithm for colored graph isomorphism for the class C on G1 and G2

6: return an isomorphism or false if none exists
7: end if
8: if k = 0 then
9: return false

10: end if
11: find a forbidden induced subgraph H in G2

12: find a set S of at most k vertices such that G1 − S ∈ C
13: for all (v1, v2) ∈ S × V (H) do
14: if v1 and v2 are colored with the same color then
15: result← IsomorphismINDC(G1 . v1, G2 . v2, k − 1)
16: if result 6= false then
17: return result
18: end if
19: end if
20: end for
21: return false

Theorem 1. Let the graph class C be characterized by the forbidden induced subgraphs H1, . . . , H`.
If the colored graph isomorphism problem for graphs from C is in P, then the colored graph isomor-
phism problem, parameterized by the vertex deletion distance from C, is fixed-parameter tractable.

Proof. W.l.o.g., both input graphs G1 and G2 have distance of at most k from C. Algorithm 1
repeatedly generates a set of candidate pairs of vertices P = S×V (H) ⊆ V (G1)×V (G2), where S

is a minimum deletion set of G1 and V (H) is the vertex set of a forbidden induced subgraph H

in G2. For any isomorphism φ, this ensures that P contains a pair (v1, v2) with φ(v1) = v2. Indeed,
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the image φ(S) is a deletion set of G2, thereby also intersecting H. The algorithm then makes
a recursive call for each choice of (v1, v2) ∈ P , removing the vertices v1 and v2 from the graphs
and correctly coloring the remaining vertices. In the base case, when G1, G2 ∈ C, isomorphism is
decided using the polynomial-time algorithm for the class C.

Observe that P has size at most dk where d is the size of the largest graph in {H1, . . . , H`}.
Thus there are O((dk)k) recursive calls, since k decreases with each call and k = 0 terminates a
branch. Together with the polynomial-time algorithm for the base case and the FPT-algorithm for
distance from C [7] this gives an O(f(k)nc) runtime, proving fixed-parameter tractability.

As an example of a class that satisfies the assumption of Theorem 1, we mention the graphs of
fixed bounded degree d ∈ N, which have a characterization by finitely many forbidden subgraphs,
and for which Luks [21] describes a polynomial-time algorithm that also solves Graph Isomor-

phism for colored graphs. Note however, that in this case the problem is not parameterized by the
degree, but by the vertex deletion distance to a graph with maximum degree of at most d.

3 Feedback vertex set number

In this section we consider the Graph Isomorphism problem parameterized by the feedback vertex
set number. Similarly to Section 2 we compute a set that intersects all forbidden structures of the
first graph (in our case a feedback vertex set). The image of that set under any isomorphism must
intersect every forbidden structure of the second graph (i.e., it must intersect every cycle). To
efficiently use this fact, we choose a shortest cycle in the second graph. However, since in general
shortest cycles may be of logarithmic size, we perform a sequence of reductions to shorten the
cycles.

The reduction rules delete all vertices of degree at most one as well as those in a specified set S,
and contract vertices of degree two; these are standard reductions for computing feedback vertex
sets. Additionally, there is a new rule resulting in the deletion of all components containing at most
one cycle. This rule allows us to prove the crucial fact, that exhaustive reduction of graphs behaves
well with respect to isomorphism. In order to make this precise, we first show that the result of
exhaustively applying the reduction rules is independent of the order in which they are applied.

Lemma 1. Let G be a graph and let S be a set. Exhaustive application of the following reduction
rules in any order has a well-defined result RS(G), which is a specific graph on a subset of V (G).

1. Delete a vertex of degree at most one.

2. Delete a vertex in a connected component containing at most one cycle.

3. Delete a vertex that is contained in S.

4. Contract a vertex of degree two that is not contained in S, i.e., replace the vertex by an edge
between its former neighbors; this may create multi-edges and loops.

Proof. For any graph G and any set S let LS(G) denote the maximum number of reduction steps
that can be applied to G (using S for Rule 3).

We assume for contradiction that there is a counterexample consisting of a graph G and a
set S with minimum value of LS(G). Let R1 and R2 be two maximal sequences of reduction steps
for G that yield different results. For i ∈ {1, 2} let vi be the first vertex reduced by Ri and let Gi

5



be the result of that first step. Observe that LS(G1) < LS(G) and LS(G2) < LS(G), implying
that RS(G1) and RS(G2) are well-defined, by our choice of G.

It suffices for us to show that we can reduce v2 in G1 and v1 in G2 such that we obtain the
same graph G′ on the same subset of V (G): Indeed since any further exhaustive reduction has the
same outcome, this implies RS(G1) = RS(G′) = RS(G2) since the result of any maximal sequence
of reductions on either G1 and G2 is well-defined, and yields the desired contradiction.

The deletion rules (Rules 1–3) are such that a vertex that may be deleted in a graph G may
also be deleted in any subgraph of G. Therefore, if both vertices are deleted from G, then v2 can
be deleted from G1 and v1 can be deleted from G2; we obtain G′ = G− {v1, v2}.

Otherwise w.l.o.g. v1 is contracted in G; there are three cases:

1. If v2 is not adjacent to v1 then the reductions are independent and reducing v1 in G2 and v2

in G1 yields the same graph G′ on the vertex set V (G) \ {v1, v2}.

2. If v2 is contracted and adjacent to v1, then there is a path (u, v1, v2, w) and contracting v1

and v2 in any order is equivalent to replacing the path by an edge {u, w}, reducing both
graphs to the same graph G′ on the vertex set V (G) \ {v1, v2}.

3. If v2 is deleted and adjacent to v1, then the degree of v2 in G1 is the same as in G, therefore it
can still be deleted. In G2 the vertex v1 has degree at most 1, implying that it can be deleted
by Rule 1. Both reductions lead to the same graph G′ = G− {v1, v2}.

Let us observe that RS(G) has minimum degree at least three and that fvs(RS(G)) ≤ fvs(G)
for any graph G and any set S. Concerning the latter, it suffices to observe that vertex deletions
do not increase the feedback vertex set number, and that any degree-2-vertex of a feedback vertex
set may be replaced by either neighbor while preserving the property of being a feedback vertex
set. We denote by R(G) := R{}(G) the special case that S is the empty set. Since the result is
independent of the order in which the rules are applied, the vertices from the set S may be removed
first, i.e., RS(G) = R(G− S).

As a corollary of Lemma 1 we conclude that the reduction R maintains isomorphisms.

Corollary 1. Let φ be an isomorphism of two graphs G1 and G2 and let S ⊆ V (G1). Then RS(G1)
and Rφ(S)(G2) are isomorphic and φ restricted to V (RS(G1)) is an isomorphism from RS(G1)
to Rφ(S)(G2).

The reduction rule that allows vertex deletion in unicyclic components, which is necessary to
obtain Corollary 1, has the effect that the set S does not need to be a feedback vertex set, in order
for the reduced graph RS(G) to become empty. As a consequence, removal of such a set S does
not necessarily leave a forest, but a graph that may contain a cycle in every component.

Definition 2. An OC graph is a graph in which every component contains at most one cycle.

The OC graphs are precisely the graphs which are reduced to the empty graph by repeated
application of the reduction rules:

Lemma 2. A graph G is an OC graph if and only if R(G) is the empty graph.

Proof. To show that for an arbitrary OC graph G the reduced graph R(G) is the empty graph we
assume, w.l.o.g., that the graph is connected. Thus G contains at most one cycle. We claim that
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Figure 2: An OC+2 Graph with distinguished vertices (v1, v2). After removal of v1 and v2 the
graph consists of two components: a tree and a unicyclic graph.

after repeatedly removing all vertices of degree at most 1, the graph is empty, or is a cycle: Indeed,
suppose v is a vertex in V (G) not contained in a cycle, and v is not removed by the reductions,
then in the reduced graph v has degree at least 2, and the longest path through v in the reduced
graph ends on one side with a vertex of degree 1, a contradiction. Finally by induction every cycle
reduces to the empty graph.

Conversely, to show that a graph which reduces to the empty graph is an OC graph, it suffices
to show that any graph which contains two cycles in one component does not reduce to the empty
graph. The minimal connected graphs that contain two cycles are the dumbells (i.e., two cycles
joined by a path) and the Theta graphs (i.e., two vertices connected by three vertex disjoint paths).
By induction they do not reduce to the empty graph, and the lemma follows.

For reduced graphs, we can use a nice structural result by Raman, Saurabh and Subrama-
nian [25], stating that graphs of minimum degree at least three must have a large feedback vertex
set number or a cycle of length at most six. Thus, in contrast to the general bound of log n on the
girth of a graph, there are few choices for the image of any feedback vertex under an isomorphism
between two reduced graphs.

Theorem 2 ([25]). Let G be a graph on n vertices with minimum degree at least three and of
feedback vertex set number at most k. If n > 2k2 then G has a cycle of length at most six.

The algorithm that we present later branches on possible partial isomorphisms; using Theorem 2
and our reductions the number of choices is reasonably small. On termination there are pairs of
vertices that the isomorphism shall respect and removal of those vertices followed by reduction
yields two empty graphs. Hence, deletion of the vertices yields two OC graphs. This leaves us with
the task of deciding isomorphism for OC graphs, with the restriction that adjacencies with the
deleted vertices must be correct. For that purpose we first define OC+k graphs and corresponding
isomorphisms.

Definition 3. A graph with at most one cycle per component plus k distinguished vertices (OC+k

graph) consists of a graph and a k-tuple of its vertices with the property that deletion of those
distinguished vertices yields an OC graph.
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An isomorphism of two OC+k graphs is an ordinary isomorphism that maps the k distinguished
vertices of one graph to those of the other respecting the order. If the graph is (vertex) colored,
then as usual the isomorphism has to respect these colors.

The restriction on the mapping of the k-tuple of vertices allows an efficient decision of isomor-
phism for these graphs, mainly requiring an isomorphism test of colored OC graphs.

Theorem 3. Graph Isomorphism for colored OC+k graphs can be solved in O(n2) time.

Proof. We first reduce the problem to colored OC graphs. For this it suffices to reduce the problem
for k > 1 to the isomorphism problem of OC+(k − 1) graphs in O(n) time. Let G and G′ be two
given colored OC+k graphs with last distinguished vertex vk and v′k respectively. If vk and v′k
are not equally colored, then the graphs are not isomorphic. Otherwise, as argued in the previous
section, the graphs G1 . vk and G2 . v′k are isomorphic, if and only if G1 and G2 are isomorphic.
The recoloring and the vertex deletion of the reduction require O(n) time.

We are left with determining the isomorphism of colored OC graphs G1 and G2. We assign
every vertex v, neighboring a leaf and contained in a component with at least 3 vertices, a color
that depends on the multiset of colors of leaf neighbors of the vertex v. We then delete all leaves in
these components. Again, the obtained graphs are isomorphic if and only if they were isomorphic
prior to the reduction. After this, we rename (in both graphs consistently) the new colors with
unused integers in {1, . . . , n} by sorting. By repeated application we obtain graphs in which every
component is a cycle or contains at most 2 vertices. This step can be performed in an amortized
time of O(n log(n)), charging the sorting to the removed leaves.

Counting for each isomorphism type the number of components with at most two vertices, it
suffices now to determine the isomorphism of disjoint unions of colored cycles. There are at most n

such cycles in an OC graph. We solve this task using a string matching algorithm: A colored
cycle 〈c1, c2, . . . , cn〉 is isomorphic to 〈c′1, c

′
2, . . . , c

′
n′〉 if and only if n = n′ and the string c′1c

′
2 . . . c′n

or its inverse c′nc′n−1 . . . c′1 is contained as a consecutive substring in the string c1c2 . . . cnc1c2 . . . cn.
We repeatedly search two color-isomorphic cycles from each graph and remove them. By employing
a linear time string matching algorithm, like the Knuth-Morris-Pratt algorithm [20], we obtain a
total running time of O(n2).

Knowing how to efficiently decide isomorphism of OC+k graphs, we work towards an algorithm
that creates sets of pairs of distinguished vertices, such that each isomorphism of the given graphs
must respect one of the sets. To that end we show that one can easily compute a set of candidate
pairs such that for any isomorphism φ of G1 and G2 one of the pairs (v1, v2) satisfies φ(v1) = v2.
The runtime of this computation is dominated by the computation of a k-feedback vertex set for G1,
for which the currently fastest FPT-algorithm due to Chen et al. [8] takes time O(5kkn2).

Lemma 3. Let G1 and G2 be two graphs of feedback vertex set number at most k and minimum
degree at least three. In time O(5kkn2) one can compute a set P ⊆ V (G1) × V (G2) of size at
most 2k + 4k log k such that (if G1 and G2 are isomorphic) for any isomorphism φ there is a
pair (v1, v2) ∈ P such that φ(v1) = v2 and v1 is contained in a minimum feedback vertex set of G1.

Proof. We choose P as S × V (C) where S is a minimum feedback vertex set of G1 and C is a
shortest cycle of G2. The time for this computation is dominated by O(5kkn2) for computing
a k-feedback vertex set of G1.
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If |V (C)| ≤ 6 then P has size at most 6k. Otherwise, by Theorem 2, G2 has at most 2k2 vertices.
Since the girth of any graph with minimum degree 3 is at most 2 log n, the cycle C has length at
most 2 log(2k2) = 2 + 4 log k. Thus P contains at most 2k + 4k log k pairs. Note that k ≥ 2 for
graphs with minimum degree 3 and that 6k ≤ 2k + 4k log k for k ≥ 2.

For any isomorphism φ from G1 to G2 the image φ(S) must intersect C since φ(S) is a feedback
vertex set of G2. Hence P contains a pair (v1, v2) with φ(v1) = v2 as claimed.

We now design an FPT-algorithm that solves Graph Isomorphism parameterized with the
feedback vertex set number. Algorithm 2 performs this task in the following way: Given two
graphs of feedback vertex set number at most k, it recursively computes an increasingly large
partial isomorphism, given by a set of pairs of vertices FP ⊆ V (G1) × V (G2). This set indicates
that, should an isomorphism exist, there is an isomorphism that maps the first vertex of each pair
in FP to the corresponding second vertex. The first components are chosen as to be part of a
minimal feedback vertex set in the first graph. At the latest when the set FP has reached size k,
removal of the vertices in each graph will result in an OC graph each. Isomorphism can then be
decided with the algorithm described in Theorem 3.

Definition 4. We say that an an isomorphism φ : V (G1) → V (G2) respects a set of pairs of
vertices FP ⊆ V (G1)× V (G2), if φ(v1) = v2 for all (v1, v2) ∈ FP.

We first prove that, given two isomorphic graphs, Algorithm 2 computes an isomorphism.

Lemma 4. Assume that G1 and G2 are two isomorphic graphs of feedback vertex set number at
most k. Suppose k′ ∈ {0, . . . , k} and FP ⊆ V (G1) × V (G2) with |FP | = k − k′. Further suppose
that there is an isomorphism φ from G1 to G2 that respects FP and that the feedback vertex set
number of R(G1 − S1) is at most k′, where S1 is the set of first components of the pairs in FP.
Then the call IsomorphismFVS(G1, G2, k

′, FP) will compute an isomorphism from G1 to G2 that
respects FP.

Proof. With FP = {(v11, v21), . . . , (v1r, v2r)} we define S1 = {v11, . . . , v1r} and S2 = {v21, . . . , v2r}.
As in the algorithm, let G′

1 = R(G1−S1) and let G′
2 = R(G2−S2). Since φ respects FP, it can be

restricted to an isomorphism from G1−S1 to G2−S2. These graphs are therefore isomorphic and,
by Corollary 1, the reduced graphs G′

1 and G′
2 are isomorphic, under the restriction of φ to V (G′

1).
We show the lemma by induction on k′: If k′ = 0, the base case, then G′

1 = R(G1 − S1) is
empty since it has feedback vertex set number k′ = 0. The isomorphic graph G′

2 is also empty. The
graphs G1 − S1 and G2 − S2 are OC graphs by Lemma 2. Therefore the graphs (G1, (v11, . . . , v1r))
and (G2, (v21, . . . , v2r)) are OC+(k − k′) graphs and φ is an isomorphism of OC+(k − k′) graphs.
Thus the call to the algorithm described in Theorem 3 will return an isomorphism that respects FP.

If k′ > 0, we distinguish two cases: Either both G′
1 and G′

2 are empty, in which case we
argue as in the base case, or the algorithm computes P for G′

1, G′
2, and k′ according to Lemma 3.

In the set P , since G′
1 and G′

2 are isomorphic (and non-empty), by Lemma 3, there must be a
pair (v1, v2) ∈ P such that φ(v1) = v2. Additionally there must be a feedback vertex set of G′

1 of
size at most k′ that contains v1, implying that the feedback vertex set number of R(G′

1 − v1) is at
most k′ − 1; by Lemma 1 this extends to RS1∪{v1}(G1) = R{v1}(G

′
1) = R(G′

1 − v1).
Thus the call IsomorphismFVS(G1, G2, k

′−1, FP∪{(v1, v2)}) has the property that the isomor-
phism φ respects FP∪{(v1, v2)} and fvs(R(G1−(S1∪{v1}))) ≤ k′−1. Hence, by induction, it returns
an isomorphism φ′ that respects FP∪{(v1, v2)}. Thus the call IsomorphismFVS(G1, G2, k

′, FP) re-
turns an isomorphism that respects FP, as claimed.
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Algorithm 2 IsomorphismFVS

Input: (G1, G2, k, FP): An integer k and two graphs G1, G2 of feedback vertex set number at
most k. A potential partial isomorphism given by pairs of vertices in FP ⊆ V (G1)× V (G2).

Output: An isomorphism φ of G1 and G2 that respects FP or report with false that no such
isomorphism exists.

1: let (v11, v21), . . . , (v1r, v2r) denote the pairs in FP
2: G′

1 ← R(G1 − {v11, . . . , v1r})
3: G′

2 ← R(G2 − {v21, . . . , v2r})
4: if if exactly one of G′

1 and G′
2 is empty then

5: return false
6: end if
7: if G′

1 and G′
2 are empty then

8: use the algorithm described in Theorem 3 on (G1, (v11, . . . , v1r)) and (G2, (v21, . . . , v2r))
9: return an isomorphism φ with φ(v1i) = v2i for all i ∈ {1, . . . , r} or false if none exists

10: end if
11: if k = 0 then
12: return false
13: end if
14: compute a set P of candidate pairs according to Lemma 3 for G′

1, G′
2, and k − r

15: for (v1, v2) ∈ P do
16: result← IsomorphismFVS(G1, G2, k − 1, FP∪{(v1, v2)})
17: if result 6= false then
18: return result
19: end if
20: end for
21: return false

The fact that the isomorphism tests for the OC+k graphs are performed in the original input
graphs ensures that, even though the reduction R may alter non-isomorphic graphs to be isomor-
phic (e.g., non-isomorphic trees are reduced to empty graphs), false positives are detected. For this
purpose, the partial isomorphism map, encoded by the set FP, has to be maintained by the algo-
rithm, for which Corollary 1 guarantees that it can be lifted into the original graphs and extended
to an isomorphism, should it initially arise from an isomorphism.

Now we show that Algorithm 2 is an FPT-algorithm.

Theorem 4. Graph Isomorphism(fvs) is fixed-parameter tractable.

Proof. Let G1 and G2 be two graphs of feedback vertex set number at most k. We show that
the call IsomorphismFVS(G1, G2, k, ∅) correctly determines whether G1 and G2 are isomorphic and
takes O((2k + 4k log k)kkn2) time.

The algorithm of Theorem 3 will only return valid isomorphisms. IsomorphismFVS will always
find an isomorphism if the given graphs are isomorphic, by Lemma 4. It thus suffices to show that
the algorithm terminates in the stated time independent of the outcome.

The call IsomorphismFVS(G1, G2, k, ∅) leads to a recursive computation of depth at most k.
The number of recursive calls is limited by the size of P , computed according to Lemma 3, which is
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bounded by 2k+4k log k. The computation at each internal node of the branching tree is dominated
by the time necessary for generating P , i.e., by O(5kkn2). The calls to the algorithm of Theorem 3
take time O(n2). This gives the runtime recurrence T (k) ≤ (2k + 4k log k)T (k − 1) + O(5kkn2),
which gives a bound of O((2k + 4k log k)kkn2).

We conclude that IsomorphismFVS, called as IsomorphismFVS(G1, G2, k, ∅), is an FPT-algo-
rithm that decides whether G1 and G2 are isomorphic.

Algorithm 2 is also an FPT-algorithm for colored graphs with parameter the minimum size of
a FVS. For this observe that while Lemma 4 is stated for uncolored graphs it guarantees that for
any isomorphism the algorithm finds a corresponding set FP. The algorithm of Theorem 3 will
then guarantee that the computed isomorphism respects the colors.

4 Conclusion and open questions

We have shown that Graph Isomorphism is fixed-parameter tractable with respect to the feed-
back vertex set number. The feedback vertex set number resides above parameters such as the
chromatic and the chordal deletion number, with respect to which Graph Isomorphism is not
fixed-parameter tractable, unless it may be solved in polynomial time in general. The feedback ver-
tex set number also resides above the parameter treewidth, with respect to which fixed-parameter
tractability remains a challenging open problem. In that direction the parameters pathwidth or
bandwith are possible further steps to show fixed-parameter tractability of GI with respect to
treewidth. Note, that a limited bandwidth simultaneously benefits from a limited treewidth and
a limited maximum degree. However even with respect to bandwidth GI might not be fixed-
parameter tractable. Showing this, may require a notion of hardness that replaces W[1]-hardness
for the not necessarily NP-hard problem Graph Isomorphism (W[1] is a parameterized analogue
of NP). The reason for this is that prevalent lower bounds from parameterized complexity, such as
W[1]-hardness of GI with respect to some parameter, imply that GI is not in P unless FPT=W[1].
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